Cargando…
Growth exponents reflect evolutionary processes and treatment response in brain metastases
Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. Howe...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361973/ https://www.ncbi.nlm.nih.gov/pubmed/37479705 http://dx.doi.org/10.1038/s41540-023-00298-1 |
_version_ | 1785076318532009984 |
---|---|
author | Ocaña-Tienda, Beatriz Pérez-Beteta, Julián Jiménez-Sánchez, Juan Molina-García, David Ortiz de Mendivil, Ana Asenjo, Beatriz Albillo, David Pérez-Romasanta, Luis A. Valiente, Manuel Zhu, Lucía García-Gómez, Pedro González-Del Portillo, Elisabet Llorente, Manuel Carballo, Natalia Arana, Estanislao Pérez-García, Víctor M. |
author_facet | Ocaña-Tienda, Beatriz Pérez-Beteta, Julián Jiménez-Sánchez, Juan Molina-García, David Ortiz de Mendivil, Ana Asenjo, Beatriz Albillo, David Pérez-Romasanta, Luis A. Valiente, Manuel Zhu, Lucía García-Gómez, Pedro González-Del Portillo, Elisabet Llorente, Manuel Carballo, Natalia Arana, Estanislao Pérez-García, Víctor M. |
author_sort | Ocaña-Tienda, Beatriz |
collection | PubMed |
description | Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data. |
format | Online Article Text |
id | pubmed-10361973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103619732023-07-23 Growth exponents reflect evolutionary processes and treatment response in brain metastases Ocaña-Tienda, Beatriz Pérez-Beteta, Julián Jiménez-Sánchez, Juan Molina-García, David Ortiz de Mendivil, Ana Asenjo, Beatriz Albillo, David Pérez-Romasanta, Luis A. Valiente, Manuel Zhu, Lucía García-Gómez, Pedro González-Del Portillo, Elisabet Llorente, Manuel Carballo, Natalia Arana, Estanislao Pérez-García, Víctor M. NPJ Syst Biol Appl Article Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data. Nature Publishing Group UK 2023-07-21 /pmc/articles/PMC10361973/ /pubmed/37479705 http://dx.doi.org/10.1038/s41540-023-00298-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ocaña-Tienda, Beatriz Pérez-Beteta, Julián Jiménez-Sánchez, Juan Molina-García, David Ortiz de Mendivil, Ana Asenjo, Beatriz Albillo, David Pérez-Romasanta, Luis A. Valiente, Manuel Zhu, Lucía García-Gómez, Pedro González-Del Portillo, Elisabet Llorente, Manuel Carballo, Natalia Arana, Estanislao Pérez-García, Víctor M. Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title | Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title_full | Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title_fullStr | Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title_full_unstemmed | Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title_short | Growth exponents reflect evolutionary processes and treatment response in brain metastases |
title_sort | growth exponents reflect evolutionary processes and treatment response in brain metastases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361973/ https://www.ncbi.nlm.nih.gov/pubmed/37479705 http://dx.doi.org/10.1038/s41540-023-00298-1 |
work_keys_str_mv | AT ocanatiendabeatriz growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT perezbetetajulian growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT jimenezsanchezjuan growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT molinagarciadavid growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT ortizdemendivilana growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT asenjobeatriz growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT albillodavid growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT perezromasantaluisa growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT valientemanuel growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT zhulucia growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT garciagomezpedro growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT gonzalezdelportilloelisabet growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT llorentemanuel growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT carballonatalia growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT aranaestanislao growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases AT perezgarciavictorm growthexponentsreflectevolutionaryprocessesandtreatmentresponseinbrainmetastases |