Cargando…
Boosting ridge for the extreme learning machine globally optimised for classification and regression problems
This paper explores the boosting ridge (BR) framework in the extreme learning machine (ELM) community and presents a novel model that trains the base learners as a global ensemble. In the context of Extreme Learning Machine single-hidden-layer networks, the nodes in the hidden layer are preconfigure...
Autores principales: | Peralez-González, Carlos, Pérez-Rodríguez, Javier, Durán-Rosal, Antonio M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362034/ https://www.ncbi.nlm.nih.gov/pubmed/37479841 http://dx.doi.org/10.1038/s41598-023-38948-3 |
Ejemplares similares
-
A combination of ridge and Liu regressions for extreme learning machine
por: Yıldırım, Hasan, et al.
Publicado: (2022) -
Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter
por: Cule, Erika, et al.
Publicado: (2013) -
Fractional ridge regression: a fast, interpretable reparameterization of ridge regression
por: Rokem, Ariel, et al.
Publicado: (2020) -
Theory of ridge regression estimation with applications
por: Saleh, A K Md Ehsanes, et al.
Publicado: (2019) -
RidgeRace: ridge regression for continuous ancestral character estimation on phylogenetic trees
por: Kratsch, Christina, et al.
Publicado: (2014)