Cargando…

The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era

Clinical phenotyping is often a foundational requirement for obtaining datasets necessary for the development of digital health applications. Traditionally done via manual abstraction, this task is often a bottleneck in development due to time and cost requirements, therefore raising significant int...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Andrew, He, Huan, Fu, Sunyang, Liu, Sijia, Miller, Kurt, Wang, Liwei, Roberts, Kirk E., Bedrick, Steven D., Hersh, William R., Liu, Hongfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362064/
https://www.ncbi.nlm.nih.gov/pubmed/37479735
http://dx.doi.org/10.1038/s41746-023-00878-9
_version_ 1785076340251164672
author Wen, Andrew
He, Huan
Fu, Sunyang
Liu, Sijia
Miller, Kurt
Wang, Liwei
Roberts, Kirk E.
Bedrick, Steven D.
Hersh, William R.
Liu, Hongfang
author_facet Wen, Andrew
He, Huan
Fu, Sunyang
Liu, Sijia
Miller, Kurt
Wang, Liwei
Roberts, Kirk E.
Bedrick, Steven D.
Hersh, William R.
Liu, Hongfang
author_sort Wen, Andrew
collection PubMed
description Clinical phenotyping is often a foundational requirement for obtaining datasets necessary for the development of digital health applications. Traditionally done via manual abstraction, this task is often a bottleneck in development due to time and cost requirements, therefore raising significant interest in accomplishing this task via in-silico means. Nevertheless, current in-silico phenotyping development tends to be focused on a single phenotyping task resulting in a dearth of reusable tools supporting cross-task generalizable in-silico phenotyping. In addition, in-silico phenotyping remains largely inaccessible for a substantial portion of potentially interested users. Here, we highlight the barriers to the usage of in-silico phenotyping and potential solutions in the form of a framework of several desiderata as observed during our implementation of such tasks. In addition, we introduce an example implementation of said framework as a software application, with a focus on ease of adoption, cross-task reusability, and facilitating the clinical phenotyping algorithm development process.
format Online
Article
Text
id pubmed-10362064
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103620642023-07-23 The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era Wen, Andrew He, Huan Fu, Sunyang Liu, Sijia Miller, Kurt Wang, Liwei Roberts, Kirk E. Bedrick, Steven D. Hersh, William R. Liu, Hongfang NPJ Digit Med Perspective Clinical phenotyping is often a foundational requirement for obtaining datasets necessary for the development of digital health applications. Traditionally done via manual abstraction, this task is often a bottleneck in development due to time and cost requirements, therefore raising significant interest in accomplishing this task via in-silico means. Nevertheless, current in-silico phenotyping development tends to be focused on a single phenotyping task resulting in a dearth of reusable tools supporting cross-task generalizable in-silico phenotyping. In addition, in-silico phenotyping remains largely inaccessible for a substantial portion of potentially interested users. Here, we highlight the barriers to the usage of in-silico phenotyping and potential solutions in the form of a framework of several desiderata as observed during our implementation of such tasks. In addition, we introduce an example implementation of said framework as a software application, with a focus on ease of adoption, cross-task reusability, and facilitating the clinical phenotyping algorithm development process. Nature Publishing Group UK 2023-07-21 /pmc/articles/PMC10362064/ /pubmed/37479735 http://dx.doi.org/10.1038/s41746-023-00878-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Perspective
Wen, Andrew
He, Huan
Fu, Sunyang
Liu, Sijia
Miller, Kurt
Wang, Liwei
Roberts, Kirk E.
Bedrick, Steven D.
Hersh, William R.
Liu, Hongfang
The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title_full The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title_fullStr The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title_full_unstemmed The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title_short The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
title_sort impact framework and implementation for accessible in silico clinical phenotyping in the digital era
topic Perspective
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362064/
https://www.ncbi.nlm.nih.gov/pubmed/37479735
http://dx.doi.org/10.1038/s41746-023-00878-9
work_keys_str_mv AT wenandrew theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT hehuan theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT fusunyang theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT liusijia theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT millerkurt theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT wangliwei theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT robertskirke theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT bedrickstevend theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT hershwilliamr theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT liuhongfang theimpactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT wenandrew impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT hehuan impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT fusunyang impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT liusijia impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT millerkurt impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT wangliwei impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT robertskirke impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT bedrickstevend impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT hershwilliamr impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera
AT liuhongfang impactframeworkandimplementationforaccessibleinsilicoclinicalphenotypinginthedigitalera