Cargando…

A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)

OBJECTIVES: To develop a mutation-based radiomics signature to predict response to imatinib in Gastrointestinal Stromal Tumors (GISTs). METHODS: Eighty-two patients with GIST were enrolled in this retrospective study, including 52 patients from one center that were used to develop the model, and 30...

Descripción completa

Detalles Bibliográficos
Autores principales: Cappello, Giovanni, Giannini, Valentina, Cannella, Roberto, Tabone, Emanuele, Ambrosini, Ilaria, Molea, Francesca, Damiani, Nicolò, Landolfi, Ilenia, Serra, Giovanni, Porrello, Giorgia, Gozzo, Cecilia, Incorvaia, Lorena, Badalamenti, Giuseppe, Grignani, Giovanni, Merlini, Alessandra, D’Ambrosio, Lorenzo, Bartolotta, Tommaso Vincenzo, Regge, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362081/
https://www.ncbi.nlm.nih.gov/pubmed/37484979
http://dx.doi.org/10.1016/j.ejro.2023.100505
_version_ 1785076344407719936
author Cappello, Giovanni
Giannini, Valentina
Cannella, Roberto
Tabone, Emanuele
Ambrosini, Ilaria
Molea, Francesca
Damiani, Nicolò
Landolfi, Ilenia
Serra, Giovanni
Porrello, Giorgia
Gozzo, Cecilia
Incorvaia, Lorena
Badalamenti, Giuseppe
Grignani, Giovanni
Merlini, Alessandra
D’Ambrosio, Lorenzo
Bartolotta, Tommaso Vincenzo
Regge, Daniele
author_facet Cappello, Giovanni
Giannini, Valentina
Cannella, Roberto
Tabone, Emanuele
Ambrosini, Ilaria
Molea, Francesca
Damiani, Nicolò
Landolfi, Ilenia
Serra, Giovanni
Porrello, Giorgia
Gozzo, Cecilia
Incorvaia, Lorena
Badalamenti, Giuseppe
Grignani, Giovanni
Merlini, Alessandra
D’Ambrosio, Lorenzo
Bartolotta, Tommaso Vincenzo
Regge, Daniele
author_sort Cappello, Giovanni
collection PubMed
description OBJECTIVES: To develop a mutation-based radiomics signature to predict response to imatinib in Gastrointestinal Stromal Tumors (GISTs). METHODS: Eighty-two patients with GIST were enrolled in this retrospective study, including 52 patients from one center that were used to develop the model, and 30 patients from a second center to validate it. Reference standard was the mutational status of tyrosine-protein kinase (KIT) and platelet-derived growth factor α (PDGFRA). Patients were dichotomized in imatinib sensitive (group 0 - mutation in KIT or PDGFRA, different from exon 18-D842V), and imatinib non-responsive (group 1 - PDGFRA exon 18-D842V mutation or absence of mutation in KIT/PDGFRA). Initially, 107 texture features were extracted from the tumor masks of baseline computed tomography scans. Different machine learning methods were then implemented to select the best combination of features for the development of the radiomics signature. RESULTS: The best performance was obtained with the 5 features selected by the ANOVA model and the Bayes classifier, using a threshold of 0.36. With this setting the radiomics signature had an accuracy and precision for sensitive patients of 82 % (95 % CI:60–95) and 90 % (95 % CI:73–97), respectively. Conversely, a precision of 80 % (95 % CI:34–97) was obtained in non-responsive patients using a threshold of 0.9. Indeed, with the latter setting 4 patients out of 5 were correctly predicted as non-responders. CONCLUSIONS: The results are a first step towards using radiomics to improve the management of patients with GIST, especially when tumor tissue is unavailable for molecular analysis or when molecular profiling is inconclusive.
format Online
Article
Text
id pubmed-10362081
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103620812023-07-23 A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST) Cappello, Giovanni Giannini, Valentina Cannella, Roberto Tabone, Emanuele Ambrosini, Ilaria Molea, Francesca Damiani, Nicolò Landolfi, Ilenia Serra, Giovanni Porrello, Giorgia Gozzo, Cecilia Incorvaia, Lorena Badalamenti, Giuseppe Grignani, Giovanni Merlini, Alessandra D’Ambrosio, Lorenzo Bartolotta, Tommaso Vincenzo Regge, Daniele Eur J Radiol Open Article OBJECTIVES: To develop a mutation-based radiomics signature to predict response to imatinib in Gastrointestinal Stromal Tumors (GISTs). METHODS: Eighty-two patients with GIST were enrolled in this retrospective study, including 52 patients from one center that were used to develop the model, and 30 patients from a second center to validate it. Reference standard was the mutational status of tyrosine-protein kinase (KIT) and platelet-derived growth factor α (PDGFRA). Patients were dichotomized in imatinib sensitive (group 0 - mutation in KIT or PDGFRA, different from exon 18-D842V), and imatinib non-responsive (group 1 - PDGFRA exon 18-D842V mutation or absence of mutation in KIT/PDGFRA). Initially, 107 texture features were extracted from the tumor masks of baseline computed tomography scans. Different machine learning methods were then implemented to select the best combination of features for the development of the radiomics signature. RESULTS: The best performance was obtained with the 5 features selected by the ANOVA model and the Bayes classifier, using a threshold of 0.36. With this setting the radiomics signature had an accuracy and precision for sensitive patients of 82 % (95 % CI:60–95) and 90 % (95 % CI:73–97), respectively. Conversely, a precision of 80 % (95 % CI:34–97) was obtained in non-responsive patients using a threshold of 0.9. Indeed, with the latter setting 4 patients out of 5 were correctly predicted as non-responders. CONCLUSIONS: The results are a first step towards using radiomics to improve the management of patients with GIST, especially when tumor tissue is unavailable for molecular analysis or when molecular profiling is inconclusive. Elsevier 2023-07-10 /pmc/articles/PMC10362081/ /pubmed/37484979 http://dx.doi.org/10.1016/j.ejro.2023.100505 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Cappello, Giovanni
Giannini, Valentina
Cannella, Roberto
Tabone, Emanuele
Ambrosini, Ilaria
Molea, Francesca
Damiani, Nicolò
Landolfi, Ilenia
Serra, Giovanni
Porrello, Giorgia
Gozzo, Cecilia
Incorvaia, Lorena
Badalamenti, Giuseppe
Grignani, Giovanni
Merlini, Alessandra
D’Ambrosio, Lorenzo
Bartolotta, Tommaso Vincenzo
Regge, Daniele
A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title_full A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title_fullStr A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title_full_unstemmed A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title_short A mutation-based radiomics signature predicts response to imatinib in Gastrointestinal Stromal Tumors (GIST)
title_sort mutation-based radiomics signature predicts response to imatinib in gastrointestinal stromal tumors (gist)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362081/
https://www.ncbi.nlm.nih.gov/pubmed/37484979
http://dx.doi.org/10.1016/j.ejro.2023.100505
work_keys_str_mv AT cappellogiovanni amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT gianninivalentina amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT cannellaroberto amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT taboneemanuele amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT ambrosiniilaria amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT moleafrancesca amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT damianinicolo amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT landolfiilenia amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT serragiovanni amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT porrellogiorgia amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT gozzocecilia amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT incorvaialorena amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT badalamentigiuseppe amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT grignanigiovanni amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT merlinialessandra amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT dambrosiolorenzo amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT bartolottatommasovincenzo amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT reggedaniele amutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT cappellogiovanni mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT gianninivalentina mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT cannellaroberto mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT taboneemanuele mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT ambrosiniilaria mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT moleafrancesca mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT damianinicolo mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT landolfiilenia mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT serragiovanni mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT porrellogiorgia mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT gozzocecilia mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT incorvaialorena mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT badalamentigiuseppe mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT grignanigiovanni mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT merlinialessandra mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT dambrosiolorenzo mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT bartolottatommasovincenzo mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist
AT reggedaniele mutationbasedradiomicssignaturepredictsresponsetoimatinibingastrointestinalstromaltumorsgist