Cargando…
Machine learning with multimodal data for COVID-19
In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC inve...
Autores principales: | Chen, Weijie, Sá, Rui C., Bai, Yuntong, Napel, Sandy, Gevaert, Olivier, Lauderdale, Diane S., Giger, Maryellen L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362086/ https://www.ncbi.nlm.nih.gov/pubmed/37483733 http://dx.doi.org/10.1016/j.heliyon.2023.e17934 |
Ejemplares similares
-
Medical imaging of COVID-19
por: Giger, Maryellen
Publicado: (2021) -
Lessons learned in transitioning to AI in the medical imaging of COVID-19
por: El Naqa, Issam, et al.
Publicado: (2021) -
Radiographic Texture Analysis of Densitometric Calcaneal Images: Relationship to Clinical Characteristics and to Bone Fragility
por: Vokes, Tamara, et al.
Publicado: (2010) -
Early Detection of Lung Cancer in the NLST Dataset
por: Mukherjee, Pritam, et al.
Publicado: (2023) -
Role of standard and soft tissue chest radiography images in deep-learning-based early diagnosis of COVID-19
por: Hu, Qiyuan, et al.
Publicado: (2021)