Cargando…

Image Enhancement via Special Functions and Its Application for Near Infrared Imaging

Image enhancement is important given that it can be used to highlight the area of interest in the images. This article designs four filters via special function for realizing image enhancement. Firstly, a filter based on the exponential function is designed. When the value of the progression is even...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ruoxi, Chen, Long, Zhang, Ling, Li, Zongan, Lin, Yingcheng, Wu, Ye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362124/
https://www.ncbi.nlm.nih.gov/pubmed/37483414
http://dx.doi.org/10.1002/gch2.202200179
Descripción
Sumario:Image enhancement is important given that it can be used to highlight the area of interest in the images. This article designs four filters via special function for realizing image enhancement. Firstly, a filter based on the exponential function is designed. When the value of the progression is even, the edge feature can be extracted. When the value of the progression is odd, sharp contrast can be obtained. Secondly, a filter is built using hyperbolic cosine and its inverse function, where a printmaking feature can be extracted. Thirdly, a filter is made via a hyperbolic secant function and its inverse. It can lead to the extraction of image edge. When the progression value is increasing, marginal effect can be found and the brightness is decreasing. Ripple morphology can be found. Fourthly, a filter is constructed through a hyperbolic sine function and its inverse, where marginal features can be extracted. Furthermore, these filters are useful for extracting the marginal features even when a high noise density of 0.9 is added to the original images. They are useful for highlighting the images acquired from near infrared imaging.