Cargando…
A novel, effective machine learning-based RNA editing profile for predicting the prognosis of lower-grade gliomas
Patients with low-grade glioma (LGG) may survive for long time periods, but their tumors often progress to higher-grade lesions. Currently, no cure for LGG is available. A-to-I RNA editing accounts for nearly 90% of all RNA editing events in humans and plays a role in tumorigenesis in various cancer...
Autores principales: | Wang, Boshen, Tian, Peijie, Sun, Qianyu, Zhang, Hengdong, Han, Lei, Zhu, Baoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362151/ https://www.ncbi.nlm.nih.gov/pubmed/37483735 http://dx.doi.org/10.1016/j.heliyon.2023.e18075 |
Ejemplares similares
-
Machine learning assessment of white blood cell counts in workers exposed to benzene: a historical cohort study
por: Xin, Yiliang, et al.
Publicado: (2022) -
Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response
por: Zhou, Hongshu, et al.
Publicado: (2023) -
Application of three prediction models in pesticide poisoning
por: Sun, Peng, et al.
Publicado: (2022) -
Hypoxia-Related lncRNA Correlates With Prognosis and Immune Microenvironment in Lower-Grade Glioma
por: Xu, Shengchao, et al.
Publicado: (2021) -
An Immune-Related Signature for Predicting the Prognosis of Lower-Grade Gliomas
por: Zhang, Hongbo, et al.
Publicado: (2020)