Cargando…
Moderate-intensity endurance training improves late phase β-cell function in adults with type 2 diabetes
Physical activity is important for type 2 diabetes treatment, yet the underlying mechanisms for these beneficial effects of exercise are not fully understood. Here, we investigated the effects of exercise training on biphasic β-cell insulin secretory function, a key factor regulating blood glucose....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362261/ https://www.ncbi.nlm.nih.gov/pubmed/37485354 http://dx.doi.org/10.1016/j.isci.2023.107226 |
Sumario: | Physical activity is important for type 2 diabetes treatment, yet the underlying mechanisms for these beneficial effects of exercise are not fully understood. Here, we investigated the effects of exercise training on biphasic β-cell insulin secretory function, a key factor regulating blood glucose. Adults with type 2 diabetes (7F/3M, age 49 ± 5 years, BMI 30 ± 3 kg/m(2)) completed a 10-week moderate-intensity exercise program and multiple components of glucose homeostasis were measured. Training improved glycemic control, insulin sensitivity, and processing of proinsulin-to-insulin. Training increased late phase β-cell function by 38% (p = 0.01), which was correlated with changes in VO(2peak) suggesting training response-dependent effects. Ras-Responsive Element Binding Protein 1 (RREB1) concentrations, a protein postulated to increase type 2 diabetes risk, were inversely correlated with increases in training-induced late-phase disposition index, consistent with an inhibitory role of RREB1 on insulin secretion. Moderate-intensity exercise training improves late-phase β-cell function and glycemic control in adults with type 2 diabetes. |
---|