Cargando…

Probing anharmonic phonons in WS(2) van der Waals crystal by Raman spectroscopy and machine learning

Understanding the optothermal physics of quantum materials will enable the efficient design of next-generation photonic and superconducting circuits. Anharmonic phonon dynamics is central to strongly interacting optothermal physics. This is because the pressure of a gas of anharmonic phonons is temp...

Descripción completa

Detalles Bibliográficos
Autores principales: Okeke, Chisom, Juma, Isaac, Cobarrubia, Antonio, Schottle, Nicholas, Maddah, Hisham, Mortazavi, Mansour, Behura, Sanjay K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362287/
https://www.ncbi.nlm.nih.gov/pubmed/37485362
http://dx.doi.org/10.1016/j.isci.2023.107174
Descripción
Sumario:Understanding the optothermal physics of quantum materials will enable the efficient design of next-generation photonic and superconducting circuits. Anharmonic phonon dynamics is central to strongly interacting optothermal physics. This is because the pressure of a gas of anharmonic phonons is temperature dependent. Phonon-phonon and electron-phonon quantum interactions contribute to the anharmonic phonon effect. Here we have studied the optothermal properties of physically exfoliated WS(2) van der Waals crystal via temperature-dependent Raman spectroscopy and machine learning strategies. This fundamental investigation will lead to unveiling the dependence of temperature on in-plane and out-of-plane Raman shifts (Raman thermometry) of WS(2) to study the thermal conductivity, hot carrier diffusion coefficient, and thermal expansion coefficient.