Cargando…

Cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating neural stem cell quiescence in the hippocampal dentate gyrus

Quiescence is a hallmark of adult neural stem cells (NSCs) in the mammalian brain, and establishment and maintenance of quiescence is essential for life-long continuous neurogenesis. How NSCs in the dentate gyrus (DG) of the hippocampus acquire their quiescence during early postnatal stages and cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Feng, Yoon, Kijun, Kim, Nam-Shik, Ming, Guo-li, Song, Hongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362507/
https://www.ncbi.nlm.nih.gov/pubmed/37390823
http://dx.doi.org/10.1016/j.stemcr.2023.05.021
Descripción
Sumario:Quiescence is a hallmark of adult neural stem cells (NSCs) in the mammalian brain, and establishment and maintenance of quiescence is essential for life-long continuous neurogenesis. How NSCs in the dentate gyrus (DG) of the hippocampus acquire their quiescence during early postnatal stages and continuously maintain quiescence in adulthood is poorly understood. Here, we show that Hopx-CreER(T2)-mediated conditional deletion of Nkcc1, which encodes a chloride importer, in mouse DG NSCs impairs both their quiescence acquisition at early postnatal stages and quiescence maintenance in adulthood. Furthermore, PV-CreER(T2)-mediated deletion of Nkcc1 in PV interneurons in the adult mouse brain leads to activation of quiescent DG NSCs, resulting in an expanded NSC pool. Consistently, pharmacological inhibition of NKCC1 promotes NSC proliferation in both early postnatal and adult mouse DG. Together, our study reveals both cell-autonomous and non-cell-autonomous roles of NKCC1 in regulating the acquisition and maintenance of NSC quiescence in the mammalian hippocampus.