Cargando…
Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model
This article proposes a combined prediction model based on a bidirectional long short-term memory (BiLSTM) neural network optimized by the snake optimizer (SO) under complete ensemble empirical mode decomposition with adaptive noise. First, complete ensemble empirical mode decomposition with adaptiv...
Autores principales: | Guo, Qiao, Zhang, Haoyu, Zhang, Yuhao, Jiang, Xuchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362850/ https://www.ncbi.nlm.nih.gov/pubmed/37483978 http://dx.doi.org/10.7717/peerj.15748 |
Ejemplares similares
-
Prediction of PM(2.5) concentration based on the CEEMDAN-RLMD-BiLSTM-LEC model
por: Guo, Qiao, et al.
Publicado: (2023) -
Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN–SE–BiLSTM model
por: Li, Haiyang, et al.
Publicado: (2023) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023) -
Prediction of air pollutant concentrations based on TCN-BiLSTM-DMAttention with STL decomposition
por: Li, Wenlin, et al.
Publicado: (2023) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022)