Cargando…
Unleashing the Power of Very Small Data to Predict Acute Exacerbations of Chronic Obstructive Pulmonary Disease
INTRODUCTION: In this article, we explore to what extent it is possible to leverage on very small data to build machine learning (ML) models that predict acute exacerbations of chronic obstructive pulmonary disease (AECOPD). METHODS: We build ML models using the small data collected during the eHeal...
Autores principales: | Jacobson, Petra Kristina, Lind, Leili, Persson, Hans Lennart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362872/ https://www.ncbi.nlm.nih.gov/pubmed/37485052 http://dx.doi.org/10.2147/COPD.S412692 |
Ejemplares similares
-
The Exacerbation of Chronic Obstructive Pulmonary Disease: Which Symptom is Most Important to Monitor?
por: Jacobson, Petra Kristina, et al.
Publicado: (2023) -
Applying the Rome Proposal on Exacerbations of Chronic Obstructive Pulmonary Disease: Does Comorbid Chronic Heart Failure Matter?
por: Jacobson, Petra Kristina, et al.
Publicado: (2023) -
Unleashing the Power of IL-17: A Promising Frontier in Chronic Obstructive Pulmonary Disease (COPD) Treatment
por: Henen, Christine, et al.
Publicado: (2023) -
The Health Diary Telemonitoring and Hospital-Based Home Care Improve Quality of Life Among Elderly Multimorbid COPD and Chronic Heart Failure Subjects
por: Persson, Hans Lennart, et al.
Publicado: (2020) -
Exacerbations of Chronic Obstructive Pulmonary Disease
por: Garvey, Christine, et al.
Publicado: (2012)