Cargando…
NuKit: A deep learning platform for fast nucleus segmentation of histopathological images
Nucleus segmentation represents the initial step for histopathological image analysis pipelines, and it remains a challenge in many quantitative analysis methods in terms of accuracy and speed. Recently, deep learning nucleus segmentation methods have demonstrated to outperform previous intensity- o...
Autores principales: | Lin, Ching-Nung, Chung, Christine H., Tan, Aik Choon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362904/ https://www.ncbi.nlm.nih.gov/pubmed/36958934 http://dx.doi.org/10.1142/S0219720023500026 |
Ejemplares similares
-
Deep Learning of Histopathology Images at the Single Cell Level
por: Lee, Kyubum, et al.
Publicado: (2021) -
A survey on recent trends in deep learning for nucleus segmentation from histopathology images
por: Basu, Anusua, et al.
Publicado: (2023) -
NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
por: Amgad, Mohamed, et al.
Publicado: (2022) -
A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image
por: Wen, Si, et al.
Publicado: (2017) -
Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images
por: Van Eycke, Yves-Rémi, et al.
Publicado: (2019)