Cargando…
Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation
BACKGROUND: precision-medicine quantitative tools for cross-sectional imaging require painstaking labeling of targets that vary considerably in volume, prohibiting scaling of data annotation efforts and supervised training to large datasets for robust and generalizable clinical performance. A straig...
Autores principales: | Dreizin, David, Zhang, Lei, Sarkar, Nathan, Bodanapally, Uttam K., Li, Guang, Hu, Jiazhen, Chen, Haomin, Khedr, Mustafa, Khetan, Udit, Campbell, Peter, Unberath, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362988/ https://www.ncbi.nlm.nih.gov/pubmed/37485306 http://dx.doi.org/10.3389/fradi.2023.1202412 |
Ejemplares similares
-
A vendor-agnostic, PACS integrated, and DICOMcompatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow
por: Zhang, Lei, et al.
Publicado: (2023) -
A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow
por: Zhang, Lei, et al.
Publicado: (2023) -
Blunt splenic injury: Assessment of follow-up CT utility using quantitative volumetry
por: Dreizin, David, et al.
Publicado: (2022) -
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review
por: Chen, Haomin, et al.
Publicado: (2022) -
Grand Challenges in AI in Radiology
por: Liu, Tianming
Publicado: (2021)