Cargando…
Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363022/ https://www.ncbi.nlm.nih.gov/pubmed/37436699 http://dx.doi.org/10.1093/bioinformatics/btad431 |
_version_ | 1785076549720997888 |
---|---|
author | Wang, Linhua Liu, Chaozhong Gao, Yang Zhang, Xiang H -F Liu, Zhandong |
author_facet | Wang, Linhua Liu, Chaozhong Gao, Yang Zhang, Xiang H -F Liu, Zhandong |
author_sort | Wang, Linhua |
collection | PubMed |
description | SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels. Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and visualizing genes’ spatial correlations and cell types’ colocalization within the precise spatial context. The output could be visualized as volcano plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations. AVAILABILITY AND IMPLEMENTATION: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL. |
format | Online Article Text |
id | pubmed-10363022 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103630222023-07-24 Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization Wang, Linhua Liu, Chaozhong Gao, Yang Zhang, Xiang H -F Liu, Zhandong Bioinformatics Applications Note SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels. Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and visualizing genes’ spatial correlations and cell types’ colocalization within the precise spatial context. The output could be visualized as volcano plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations. AVAILABILITY AND IMPLEMENTATION: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL. Oxford University Press 2023-07-12 /pmc/articles/PMC10363022/ /pubmed/37436699 http://dx.doi.org/10.1093/bioinformatics/btad431 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Note Wang, Linhua Liu, Chaozhong Gao, Yang Zhang, Xiang H -F Liu, Zhandong Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title | Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title_full | Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title_fullStr | Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title_full_unstemmed | Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title_short | Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization |
title_sort | unravelling spatial gene associations with seagal: a python package for spatial transcriptomics data analysis and visualization |
topic | Applications Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363022/ https://www.ncbi.nlm.nih.gov/pubmed/37436699 http://dx.doi.org/10.1093/bioinformatics/btad431 |
work_keys_str_mv | AT wanglinhua unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization AT liuchaozhong unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization AT gaoyang unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization AT zhangxianghf unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization AT liuzhandong unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization |