Cargando…

Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization

SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Linhua, Liu, Chaozhong, Gao, Yang, Zhang, Xiang H -F, Liu, Zhandong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363022/
https://www.ncbi.nlm.nih.gov/pubmed/37436699
http://dx.doi.org/10.1093/bioinformatics/btad431
_version_ 1785076549720997888
author Wang, Linhua
Liu, Chaozhong
Gao, Yang
Zhang, Xiang H -F
Liu, Zhandong
author_facet Wang, Linhua
Liu, Chaozhong
Gao, Yang
Zhang, Xiang H -F
Liu, Zhandong
author_sort Wang, Linhua
collection PubMed
description SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels. Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and visualizing genes’ spatial correlations and cell types’ colocalization within the precise spatial context. The output could be visualized as volcano plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations. AVAILABILITY AND IMPLEMENTATION: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL.
format Online
Article
Text
id pubmed-10363022
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-103630222023-07-24 Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization Wang, Linhua Liu, Chaozhong Gao, Yang Zhang, Xiang H -F Liu, Zhandong Bioinformatics Applications Note SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels. Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and visualizing genes’ spatial correlations and cell types’ colocalization within the precise spatial context. The output could be visualized as volcano plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations. AVAILABILITY AND IMPLEMENTATION: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL. Oxford University Press 2023-07-12 /pmc/articles/PMC10363022/ /pubmed/37436699 http://dx.doi.org/10.1093/bioinformatics/btad431 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Note
Wang, Linhua
Liu, Chaozhong
Gao, Yang
Zhang, Xiang H -F
Liu, Zhandong
Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title_full Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title_fullStr Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title_full_unstemmed Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title_short Unravelling spatial gene associations with SEAGAL: a Python package for spatial transcriptomics data analysis and visualization
title_sort unravelling spatial gene associations with seagal: a python package for spatial transcriptomics data analysis and visualization
topic Applications Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363022/
https://www.ncbi.nlm.nih.gov/pubmed/37436699
http://dx.doi.org/10.1093/bioinformatics/btad431
work_keys_str_mv AT wanglinhua unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization
AT liuchaozhong unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization
AT gaoyang unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization
AT zhangxianghf unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization
AT liuzhandong unravellingspatialgeneassociationswithseagalapythonpackageforspatialtranscriptomicsdataanalysisandvisualization