Cargando…

Association of mitochondrial DNA variation with high myopia in a Han Chinese population

High myopia (HM), which is characterized by oxidative stress, is one of the leading causes of visual impairment and blindness across the world. Family and population genetic studies have uncovered nuclear-genome variants in proteins functioned in the mitochondria. However, whether mitochondrial DNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Shilai, Jiang, Siyi, Wang, Siyu, Lin, Peng, Sun, Haojun, Peng, Hui, Yang, Jiaying, Kong, Hengte, Wang, Sheng, Bai, Qingshi, Qiu, Ruowen, Dai, Wei, Yuan, Jian, Ma, Yunlong, Yu, Xiaoguang, Yao, Yinghao, Su, Jianzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363046/
https://www.ncbi.nlm.nih.gov/pubmed/37277661
http://dx.doi.org/10.1007/s00438-023-02036-y
Descripción
Sumario:High myopia (HM), which is characterized by oxidative stress, is one of the leading causes of visual impairment and blindness across the world. Family and population genetic studies have uncovered nuclear-genome variants in proteins functioned in the mitochondria. However, whether mitochondrial DNA mutations are involved in HM remains unexplored. Here, we performed the first large-scale whole-mitochondrial genome study in 9613 HM cases and 9606 control subjects of Han Chinese ancestry for identifying HM-associated mitochondrial variants. The single-variant association analysis identified nine novel genetic variants associated with HM reaching the entire mitochondrial wide significance level, including rs370378529 in ND2 with an odds ratio (OR) of 5.25. Interestingly, eight out of nine variants were predominantly located in related sub-haplogroups, i.e. m.5261G > A in B4b1c, m.12280A > G in G2a4, m.7912G > A in D4a3b, m.94G > A in D4e1, m.14857 T > C in D4e3, m.14280A > G in D5a2, m.16272A > G in G2a4, m.8718A > G in M71 and F1a3, indicating that the sub-haplogroup background can increase the susceptible risk for high myopia. The polygenic risk score analysis of the target and validation cohorts indicated a high accuracy for predicting HM with mtDNA variants (AUC = 0.641). Cumulatively, our findings highlight the critical roles of mitochondrial variants in untangling the genetic etiology of HM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00438-023-02036-y.