Cargando…

Increased intracellular crowding during hyperosmotic stress

Hyperosmotic stress activates in live cells numerous processes and also promotes intracellular protein/RNA aggregation and phase separation. However, the time course and the extent of these changes remain largely uncharacterized. To investigate dynamic changes in intracellular macromolecular crowdin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitamura, Akira, Oasa, Sho, Kawaguchi, Haruka, Osaka, Misato, Vukojević, Vladana, Kinjo, Masataka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363123/
https://www.ncbi.nlm.nih.gov/pubmed/37481632
http://dx.doi.org/10.1038/s41598-023-39090-w
Descripción
Sumario:Hyperosmotic stress activates in live cells numerous processes and also promotes intracellular protein/RNA aggregation and phase separation. However, the time course and the extent of these changes remain largely uncharacterized. To investigate dynamic changes in intracellular macromolecular crowding (MMC) induced by hyperosmotic stress in live cells, we used fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy (FCS) to quantify changes in the local environment by measuring the fluorescence lifetime and the diffusion of the monomeric enhanced green fluorescent protein (eGFP), respectively. Real-time monitoring of eGFP fluorescence lifetime showed that a faster response to environmental changes due to MMC is observed than when measuring the acceptor/donor emission ratio using the MMC-sensitive Förster resonance energy transfer sensor (GimRET). This suggests that eGFP molecular electronic states and/or collision frequency are affected by changes in the immediate surroundings due to MMC without requiring conformational changes as is the case for the GimRET sensor. Furthermore, eGFP diffusion assessed by FCS indicated higher intracellular viscosity due to increased MMC during hyperosmotic stress. Our findings reveal that changes in eGFP fluorescence lifetime and diffusion are early indicators of elevated intracellular MMC. Our approach can therefore be used to reveal in live cells short-lived transient states through which MMC builds over time, which could not be observed when measuring changes in other physical properties that occur at slower time scales.