Cargando…
Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps
Ocean acidification, caused by anthropogenic CO(2) emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these qu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363134/ https://www.ncbi.nlm.nih.gov/pubmed/37481685 http://dx.doi.org/10.1038/s42003-023-05103-7 |
_version_ | 1785076576925253632 |
---|---|
author | Leiva, Carlos Pérez-Portela, Rocío Lemer, Sarah |
author_facet | Leiva, Carlos Pérez-Portela, Rocío Lemer, Sarah |
author_sort | Leiva, Carlos |
collection | PubMed |
description | Ocean acidification, caused by anthropogenic CO(2) emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO(2) seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival. |
format | Online Article Text |
id | pubmed-10363134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103631342023-07-24 Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps Leiva, Carlos Pérez-Portela, Rocío Lemer, Sarah Commun Biol Article Ocean acidification, caused by anthropogenic CO(2) emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO(2) seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival. Nature Publishing Group UK 2023-07-22 /pmc/articles/PMC10363134/ /pubmed/37481685 http://dx.doi.org/10.1038/s42003-023-05103-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Leiva, Carlos Pérez-Portela, Rocío Lemer, Sarah Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title | Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title_full | Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title_fullStr | Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title_full_unstemmed | Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title_short | Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO(2) seeps |
title_sort | genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic co(2) seeps |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363134/ https://www.ncbi.nlm.nih.gov/pubmed/37481685 http://dx.doi.org/10.1038/s42003-023-05103-7 |
work_keys_str_mv | AT leivacarlos genomicsignaturessuggestingadaptationtooceanacidificationinacoralholobiontfromvolcanicco2seeps AT perezportelarocio genomicsignaturessuggestingadaptationtooceanacidificationinacoralholobiontfromvolcanicco2seeps AT lemersarah genomicsignaturessuggestingadaptationtooceanacidificationinacoralholobiontfromvolcanicco2seeps |