Cargando…

CCND1-associated ceRNA network reveal the critical pathway of TPRG1-AS1-hsa-miR-363-3p-MYO1B as a prognostic marker for head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer death globally, yet there are few useful biomarkers for early identification and prognostic prediction. Previous studies have confirmed that CCND1 amplification is closely associated with head and neck oncogenesis, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zehao, Qiu, Xinguang, He, Qi, Fu, Xinghao, Ji, Feihong, Tian, Xiufen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363142/
https://www.ncbi.nlm.nih.gov/pubmed/37481637
http://dx.doi.org/10.1038/s41598-023-38847-7
Descripción
Sumario:Head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer death globally, yet there are few useful biomarkers for early identification and prognostic prediction. Previous studies have confirmed that CCND1 amplification is closely associated with head and neck oncogenesis, and the present study explored the ceRNA network associated with CCND1. Gene expression profiling of the Head and Neck Squamous Cell Carcinoma (HNSC) project of The Cancer Genome Atlas (TCGA) program identified the TPRG1-AS1-hsa-miR-363-3P-MYO1B gene regulatory axis associated with CCND1. Further analysis of the database showed that MYOB was regulated by methylation in head and neck tumors, and functional enrichment analysis showed that MYO1B was involved in "actin filament organization" and "cadherin binding ". Immune infiltration analysis suggested that MYO1B may influence tumorigenesis and prognosis by regulating the immune microenvironment of HNSC. MYO1B enhanced tumor spread through the EMT approach, according to epithelial mesenchymal transition (EMT) characterisation. We analyzed both herbal and GSCALite databases and found that CCND1 and MYO1B have the potential as predictive biomarkers for the treatment of HNSC patients. RT-qPCR validated bioinformatic predictions of gene expression in vitro cell lines. In conclusion, we found a CCND1-related ceRNA network and identified the novel TPRG1-AS1-hsa-miR-363-3p-MYO1B pathway as a possible HNSC diagnostic biomarker and therapeutic target.