Cargando…
A universal tool for predicting differentially active features in single-cell and spatial genomics data
With the growing complexity of single-cell and spatial genomics data, there is an increasing importance of unbiased and efficient exploratory data analysis tools. One common exploratory data analysis step is the prediction of genes with different levels of activity in a subset of cells or locations...
Autores principales: | Vandenbon, Alexis, Diez, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363154/ https://www.ncbi.nlm.nih.gov/pubmed/37481581 http://dx.doi.org/10.1038/s41598-023-38965-2 |
Ejemplares similares
-
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
por: Vandenbon, Alexis, et al.
Publicado: (2020) -
Evaluation of critical data processing steps for reliable prediction of gene co-expression from large collections of RNA-seq data
por: Vandenbon, Alexis
Publicado: (2022) -
A Set of Structural Features Defines the Cis-Regulatory Modules of Antenna-Expressed Genes in Drosophila melanogaster
por: López, Yosvany, et al.
Publicado: (2014) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
A novel unbiased measure for motif co-occurrence predicts combinatorial regulation of transcription
por: Vandenbon, Alexis, et al.
Publicado: (2012)