Cargando…

Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability

Formation damage poses a widespread challenge in the oil and gas industry, leading to diminished permeability, flow rates, and overall well productivity. Acidizing is a commonly employed technique aimed at mitigating damage and enhancing permeability. In this study, to predict the permeability after...

Descripción completa

Detalles Bibliográficos
Autores principales: Dargi, Matin, Khamehchi, Ehsan, Mahdavi Kalatehno, Javad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363159/
https://www.ncbi.nlm.nih.gov/pubmed/37481625
http://dx.doi.org/10.1038/s41598-023-39156-9
Descripción
Sumario:Formation damage poses a widespread challenge in the oil and gas industry, leading to diminished permeability, flow rates, and overall well productivity. Acidizing is a commonly employed technique aimed at mitigating damage and enhancing permeability. In this study, to predict the permeability after acidizing in oil and gas reservoirs, three machine learning models, namely artificial neural networks, random forest, and XGBoost, along with genetic programming were used to estimate permeability changes after acidizing. These models are utilized to estimate permeability changes following acidizing operations. Training of the models involved a dataset comprising 218 acidizing operations conducted in diverse reservoirs across Iran. The input parameters, namely permeability, porosity, skin factor, calcite mineral fraction, acid injection rate, and injected acid volume, were optimized through the use of a genetic algorithm. Statistical and graphical analysis of the results demonstrates that genetic programming outperformed the other machine learning techniques, yielding superior performance with R square and RMSE values of 0.82 and 17.65, respectively. Nevertheless, the other models also exhibited commendable performance, surpassing an R square value of 0.73. The post-acidizing permeability data obtained from core flooding experiments conducted on carbonate and sandstone cores was utilized to validate the models. The genetic programming model demonstrates an average error of 21.1%. The evaluation of post-acidizing permeability using genetic programming, in comparison with the results obtained from the core-flood test, revealed errors of 22.95% and 32.4% for carbonate and sandstone cores, respectively. Furthermore, a comparison between the calculated post-acidizing permeability derived from the GP model and previous studies indicated errors within the range of 8.6–26.59%. The findings highlight the potential of genetic programming and machine learning algorithms in accurately predicting post-acidizing permeability, thereby aiding in acidizing design, effectiveness assessment, and ultimately enhancing oil and gas production rates.