Cargando…
Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability
Formation damage poses a widespread challenge in the oil and gas industry, leading to diminished permeability, flow rates, and overall well productivity. Acidizing is a commonly employed technique aimed at mitigating damage and enhancing permeability. In this study, to predict the permeability after...
Autores principales: | Dargi, Matin, Khamehchi, Ehsan, Mahdavi Kalatehno, Javad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363159/ https://www.ncbi.nlm.nih.gov/pubmed/37481625 http://dx.doi.org/10.1038/s41598-023-39156-9 |
Ejemplares similares
-
Optimization of salinity and composition of injected low salinity water into sandstone reservoirs with minimum scale deposition
por: Bijani, Masoud, et al.
Publicado: (2023) -
Predictive Modeling
of PROTAC Cell Permeability with
Machine Learning
por: Poongavanam, Vasanthanathan, et al.
Publicado: (2023) -
A predictive machine learning approach for microstructure optimization and materials design
por: Liu, Ruoqian, et al.
Publicado: (2015) -
Comprehensive experimental investigation of the effective parameters on stability of silica nanoparticles during low salinity water flooding with minimum scale deposition into sandstone reservoirs
por: Bijani, Masoud, et al.
Publicado: (2022) -
Reliable Prediction of Caco-2 Permeability by Supervised Recursive Machine Learning Approaches
por: Falcón-Cano, Gabriela, et al.
Publicado: (2022)