Cargando…
Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months
BACKGROUND: Prognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363297/ https://www.ncbi.nlm.nih.gov/pubmed/37481590 http://dx.doi.org/10.1186/s13054-023-04573-9 |
_version_ | 1785076594384044032 |
---|---|
author | Banoei, Mohammad M. Lee, Chel Hee Hutchison, James Panenka, William Wellington, Cheryl Wishart, David S. Winston, Brent W. |
author_facet | Banoei, Mohammad M. Lee, Chel Hee Hutchison, James Panenka, William Wellington, Cheryl Wishart, David S. Winston, Brent W. |
author_sort | Banoei, Mohammad M. |
collection | PubMed |
description | BACKGROUND: Prognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensitive and specific biomarkers to predict outcomes. METHODS: We prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI (CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liquid chromatography-tandem mass spectrometry (DI/LC–MS/MS) and untargeted proton nuclear magnetic resonance spectroscopy ((1)H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the association between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5–8) and unfavorable (GOSE 1–4), outcomes. RESULTS: Serum metabolic profiles on days 1 and 4 post-injury were highly predictive (Q(2) > 0.4–0.5) and highly accurate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic profiles on day 4 were more predictive (Q(2) > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino acids, and glutamate were associated with poor outcomes and mortality. DISCUSSION: Metabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and significant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabolite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI to be used for clinical practice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-023-04573-9. |
format | Online Article Text |
id | pubmed-10363297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-103632972023-07-24 Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months Banoei, Mohammad M. Lee, Chel Hee Hutchison, James Panenka, William Wellington, Cheryl Wishart, David S. Winston, Brent W. Crit Care Research BACKGROUND: Prognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensitive and specific biomarkers to predict outcomes. METHODS: We prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI (CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liquid chromatography-tandem mass spectrometry (DI/LC–MS/MS) and untargeted proton nuclear magnetic resonance spectroscopy ((1)H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the association between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5–8) and unfavorable (GOSE 1–4), outcomes. RESULTS: Serum metabolic profiles on days 1 and 4 post-injury were highly predictive (Q(2) > 0.4–0.5) and highly accurate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic profiles on day 4 were more predictive (Q(2) > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino acids, and glutamate were associated with poor outcomes and mortality. DISCUSSION: Metabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and significant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabolite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI to be used for clinical practice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-023-04573-9. BioMed Central 2023-07-22 /pmc/articles/PMC10363297/ /pubmed/37481590 http://dx.doi.org/10.1186/s13054-023-04573-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Banoei, Mohammad M. Lee, Chel Hee Hutchison, James Panenka, William Wellington, Cheryl Wishart, David S. Winston, Brent W. Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title | Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title_full | Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title_fullStr | Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title_full_unstemmed | Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title_short | Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months |
title_sort | using metabolomics to predict severe traumatic brain injury outcome (gose) at 3 and 12 months |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363297/ https://www.ncbi.nlm.nih.gov/pubmed/37481590 http://dx.doi.org/10.1186/s13054-023-04573-9 |
work_keys_str_mv | AT banoeimohammadm usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT leechelhee usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT hutchisonjames usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT panenkawilliam usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT wellingtoncheryl usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT wishartdavids usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT winstonbrentw usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months AT usingmetabolomicstopredictseveretraumaticbraininjuryoutcomegoseat3and12months |