Cargando…
Assessment of emerging pretraining strategies in interpretable multimodal deep learning for cancer prognostication
BACKGROUND: Deep learning models can infer cancer patient prognosis from molecular and anatomic pathology information. Recent studies that leveraged information from complementary multimodal data improved prognostication, further illustrating the potential utility of such methods. However, current a...
Autores principales: | Azher, Zarif L., Suvarna, Anish, Chen, Ji-Qing, Zhang, Ze, Christensen, Brock C., Salas, Lucas A., Vaickus, Louis J., Levy, Joshua J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363299/ https://www.ncbi.nlm.nih.gov/pubmed/37481666 http://dx.doi.org/10.1186/s13040-023-00338-w |
Ejemplares similares
-
PathFlowAI: A High-Throughput Workflow for Preprocessing, Deep Learning and Interpretation in Digital Pathology
por: Levy, Joshua J., et al.
Publicado: (2020) -
Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study
por: Fatemi, Michael, et al.
Publicado: (2023) -
Topological Feature Extraction and Visualization of Whole Slide Images using Graph Neural Networks
por: Levy, Joshua, et al.
Publicado: (2021) -
Comparison of machine-learning algorithms for the prediction of Current Procedural Terminology (CPT) codes from pathology reports
por: Levy, Joshua, et al.
Publicado: (2022) -
Using Satellite Images and Deep Learning to Identify Associations Between County-Level Mortality and Residential Neighborhood Features Proximal to Schools: A Cross-Sectional Study
por: Levy, Joshua J., et al.
Publicado: (2021)