Cargando…
Evaluation of Bayesian spatiotemporal infectious disease models for prospective surveillance analysis
BACKGROUND: COVID-19 brought enormous challenges to public health surveillance and underscored the importance of developing and maintaining robust systems for accurate surveillance. As public health data collection efforts expand, there is a critical need for infectious disease modeling researchers...
Autores principales: | Kim, Joanne, Lawson, Andrew B., Neelon, Brian, Korte, Jeffrey E., Eberth, Jan M., Chowell, Gerardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363300/ https://www.ncbi.nlm.nih.gov/pubmed/37481553 http://dx.doi.org/10.1186/s12874-023-01987-5 |
Ejemplares similares
-
Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data
por: Rotejanaprasert, Chawarat, et al.
Publicado: (2023) -
Application of a Bayesian Spatiotemporal Surveillance Method to NYC Syndromic Data
por: Levin-Rector, Alison, et al.
Publicado: (2014) -
Mathematical and statistical modeling for emerging and re-emerging infectious diseases
por: Chowell, Gerardo, et al.
Publicado: (2016) -
Quantitative methods for investigating infectious disease outbreaks
por: Yan, Ping, et al.
Publicado: (2019) -
Theoretical perspectives on the infectiousness of Ebola virus disease
por: Nishiura, Hiroshi, et al.
Publicado: (2015)