Cargando…
Comparison of discrimination and calibration performance of ECG-based machine learning models for prediction of new-onset atrial fibrillation
BACKGROUND: Machine learning (ML) methods to build prediction models starting from electrocardiogram (ECG) signals are an emerging research field. The aim of the present study is to investigate the performances of two ML approaches based on ECGs for the prediction of new-onset atrial fibrillation (A...
Autores principales: | Baj, Giovanni, Gandin, Ilaria, Scagnetto, Arjuna, Bortolussi, Luca, Cappelletto, Chiara, Di Lenarda, Andrea, Barbati, Giulia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363301/ https://www.ncbi.nlm.nih.gov/pubmed/37481514 http://dx.doi.org/10.1186/s12874-023-01989-3 |
Ejemplares similares
-
Deep-learning-based prognostic modeling for incident heart failure in patients with diabetes using electronic health records: A retrospective cohort study
por: Gandin, Ilaria, et al.
Publicado: (2023) -
Multi-state modelling of heart failure care path: A population-based investigation from Italy
por: Gasperoni, Francesca, et al.
Publicado: (2017) -
Automated Atrial Fibrillation Detection with ECG
por: Wei, Ting-Ruen, et al.
Publicado: (2022) -
Isolated left atrial cryoablation of atrial fibrillation in conventional mitral valve surgery
por: Gatti, Giuseppe, et al.
Publicado: (2020) -
Early Detection of Atrial Fibrillation Based on ECG Signals
por: Ahmed, Nuzhat, et al.
Publicado: (2020)