Cargando…
MS-DCANet: A Novel Segmentation Network For Multi-Modality COVID-19 Medical Images
AIM: The Coronavirus Disease 2019 (COVID-19) pandemic has increased the public health burden and brought profound disaster to humans. For the particularity of the COVID-19 medical images with blurred boundaries, low contrast and different infection sites, some researchers have improved the accuracy...
Autores principales: | Pan, Xiaoyu, Zhu, Huazheng, Du, Jinglong, Hu, Guangtao, Han, Baoru, Jia, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363353/ https://www.ncbi.nlm.nih.gov/pubmed/37489133 http://dx.doi.org/10.2147/JMDH.S417068 |
Ejemplares similares
-
Zero-Watermarking Algorithm for Medical Image Based on VGG19 Deep Convolution Neural Network
por: Han, Baoru, et al.
Publicado: (2021) -
Multi-Modality Medical Image Fusion Using Convolutional Neural Network and Contrast Pyramid
por: Wang, Kunpeng, et al.
Publicado: (2020) -
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023) -
Overview of Multi-Modal Brain Tumor MR Image Segmentation
por: Zhang, Wenyin, et al.
Publicado: (2021) -
Multi-Modality Microscopy Image Style Augmentation for Nuclei Segmentation
por: Liu, Ye, et al.
Publicado: (2022)