Cargando…
The promise of zero-shot learning for alcohol image detection: comparison with a task-specific deep learning algorithm
Exposure to alcohol content in media increases alcohol consumption and related harm. With exponential growth of media content, it is important to use algorithms to automatically detect and quantify alcohol exposure. Foundation models such as Contrastive Language-Image Pretraining (CLIP) can detect a...
Autores principales: | Bonela, Abraham Albert, Nibali, Aiden, He, Zhen, Riordan, Benjamin, Anderson-Luxford, Dan, Kuntsche, Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363523/ https://www.ncbi.nlm.nih.gov/pubmed/37482586 http://dx.doi.org/10.1038/s41598-023-39169-4 |
Ejemplares similares
-
Development and validation of the Alcoholic Beverage Identification Deep Learning Algorithm version 2 for quantifying alcohol exposure in electronic images
por: Bonela, Abraham Albert, et al.
Publicado: (2022) -
Detecting Errors with Zero-Shot Learning
por: Wu, Xiaoyu, et al.
Publicado: (2022) -
Feature Selection Methods for Zero-Shot Learning of Neural Activity
por: Caceres, Carlos A., et al.
Publicado: (2017) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023) -
System alignment supports cross-domain learning and zero-shot generalisation
por: Aho, Kaarina, et al.
Publicado: (2022)