Cargando…

Streamlined and on-demand preparation of mRNA products on a universal integrated platform

Vaccines are used to protect human beings from various diseases. mRNA vaccines simplify the development process and reduce the production cost of conventional vaccines, making it possible to respond rapidly to acute and severe diseases, such as coronavirus disease 2019. In this study, a universal in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Hongjuan, Rong, Zhen, Liu, Liyan, Sang, Ye, Yang, Jing, Wang, Shengqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363538/
https://www.ncbi.nlm.nih.gov/pubmed/37492616
http://dx.doi.org/10.1038/s41378-023-00538-8
Descripción
Sumario:Vaccines are used to protect human beings from various diseases. mRNA vaccines simplify the development process and reduce the production cost of conventional vaccines, making it possible to respond rapidly to acute and severe diseases, such as coronavirus disease 2019. In this study, a universal integrated platform for the streamlined and on-demand preparation of mRNA products directly from DNA templates was established. Target DNA templates were amplified in vitro by a polymerase chain reaction module and transcribed into mRNA sequences, which were magnetically purified and encapsulated in lipid nanoparticles. As an initial example, enhanced green fluorescent protein (eGFP) was used to test the platform. The expression capacity and efficiency of the products were evaluated by transfecting them into HEK-293T cells. The batch production rate was estimated to be 200–300 μg of eGFP mRNA in 8 h. Furthermore, an mRNA vaccine encoding the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein was produced by this platform. The proposed integrated platform shows advantages for the universal and on-demand preparation of mRNA products, offering the potential to facilitate broad access to mRNA technology and enable the development of mRNA products, including the rapid supply of new mRNA-based vaccines in pandemic situations and personalized mRNA-based therapies for oncology and chronic infectious diseases, such as viral hepatitis and acquired immune deficiency syndrome. [Image: see text]