Cargando…
Efficient clinical data analysis for prediction of coal workers' pneumoconiosis using machine learning algorithms
PURPOSE: The purpose of this study is to propose an efficient coal workers' pneumoconiosis (CWP) clinical prediction system and put it into clinical use for clinical diagnosis of pneumoconiosis. METHODS: Patients with CWP and dust‐exposed workers who were enrolled from August 2021 to December 2...
Autores principales: | Dong, Hantian, Zhu, Biaokai, Kong, Xiaomei, Zhang, Xinri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363790/ https://www.ncbi.nlm.nih.gov/pubmed/37380332 http://dx.doi.org/10.1111/crj.13657 |
Ejemplares similares
-
Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis
por: Dong, Hantian, et al.
Publicado: (2022) -
Silicosis and coal workers' pneumoconiosis.
por: Castranova, V, et al.
Publicado: (2000) -
Prevalence and pathogenesis of pneumoconiosis in coal workers.
por: Heppleston, A G
Publicado: (1988) -
Screening of Serum Biomarkers of Coal Workers’ Pneumoconiosis by Metabolomics Combined with Machine Learning Strategy
por: Chen, Zhangjian, et al.
Publicado: (2022) -
Mapping and Prediction of Coal Workers’ Pneumoconiosis with Bioavailable Iron Content in the Bituminous Coals
por: Huang, Xi, et al.
Publicado: (2005)