Cargando…
The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils
Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective proce...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363845/ https://www.ncbi.nlm.nih.gov/pubmed/37492149 http://dx.doi.org/10.1111/eva.13569 |
_version_ | 1785076723675561984 |
---|---|
author | Hamede, Rodrigo Fountain‐Jones, Nicholas M. Arce, Fernando Jones, Menna Storfer, Andrew Hohenlohe, Paul A. McCallum, Hamish Roche, Benjamin Ujvari, Beata Thomas, Frédéric |
author_facet | Hamede, Rodrigo Fountain‐Jones, Nicholas M. Arce, Fernando Jones, Menna Storfer, Andrew Hohenlohe, Paul A. McCallum, Hamish Roche, Benjamin Ujvari, Beata Thomas, Frédéric |
author_sort | Hamede, Rodrigo |
collection | PubMed |
description | Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade‐offs can drive host‐pathogen coexistence, even when disease‐induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long‐term epidemic dynamics and evaluating disease control strategies. |
format | Online Article Text |
id | pubmed-10363845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103638452023-07-25 The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils Hamede, Rodrigo Fountain‐Jones, Nicholas M. Arce, Fernando Jones, Menna Storfer, Andrew Hohenlohe, Paul A. McCallum, Hamish Roche, Benjamin Ujvari, Beata Thomas, Frédéric Evol Appl Original Articles Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade‐offs can drive host‐pathogen coexistence, even when disease‐induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long‐term epidemic dynamics and evaluating disease control strategies. John Wiley and Sons Inc. 2023-06-20 /pmc/articles/PMC10363845/ /pubmed/37492149 http://dx.doi.org/10.1111/eva.13569 Text en © 2023 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Hamede, Rodrigo Fountain‐Jones, Nicholas M. Arce, Fernando Jones, Menna Storfer, Andrew Hohenlohe, Paul A. McCallum, Hamish Roche, Benjamin Ujvari, Beata Thomas, Frédéric The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title | The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title_full | The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title_fullStr | The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title_full_unstemmed | The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title_short | The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils |
title_sort | tumour is in the detail: local phylogenetic, population and epidemiological dynamics of a transmissible cancer in tasmanian devils |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363845/ https://www.ncbi.nlm.nih.gov/pubmed/37492149 http://dx.doi.org/10.1111/eva.13569 |
work_keys_str_mv | AT hamederodrigo thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT fountainjonesnicholasm thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT arcefernando thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT jonesmenna thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT storferandrew thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT hohenlohepaula thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT mccallumhamish thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT rochebenjamin thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT ujvaribeata thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT thomasfrederic thetumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT hamederodrigo tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT fountainjonesnicholasm tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT arcefernando tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT jonesmenna tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT storferandrew tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT hohenlohepaula tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT mccallumhamish tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT rochebenjamin tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT ujvaribeata tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils AT thomasfrederic tumourisinthedetaillocalphylogeneticpopulationandepidemiologicaldynamicsofatransmissiblecancerintasmaniandevils |