Cargando…

Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite

[Image: see text] Recent scientific interest in examining the bandgap evolution of a MAPbI(3) hybrid perovskite by applying hydrostatic pressure has mostly focused on a room-temperature tetragonal phase. In contrast, the pressure response of a low-temperature orthorhombic phase (OP) of MAPbI(3) has...

Descripción completa

Detalles Bibliográficos
Autores principales: Pienia̧żek, Agnieszka, Dybała, Filip, Polak, Maciej P., Przypis, Łukasz, Herman, Artur P., Kopaczek, Jan, Kudrawiec, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364135/
https://www.ncbi.nlm.nih.gov/pubmed/37436849
http://dx.doi.org/10.1021/acs.jpclett.3c01258
_version_ 1785076788715585536
author Pienia̧żek, Agnieszka
Dybała, Filip
Polak, Maciej P.
Przypis, Łukasz
Herman, Artur P.
Kopaczek, Jan
Kudrawiec, Robert
author_facet Pienia̧żek, Agnieszka
Dybała, Filip
Polak, Maciej P.
Przypis, Łukasz
Herman, Artur P.
Kopaczek, Jan
Kudrawiec, Robert
author_sort Pienia̧żek, Agnieszka
collection PubMed
description [Image: see text] Recent scientific interest in examining the bandgap evolution of a MAPbI(3) hybrid perovskite by applying hydrostatic pressure has mostly focused on a room-temperature tetragonal phase. In contrast, the pressure response of a low-temperature orthorhombic phase (OP) of MAPbI(3) has not been explored and understood. In this research, we investigate for the first time how hydrostatic pressure alters the electronic landscape of the OP of MAPbI(3). Pressure studies using photoluminescence combined with calculations within density functional theory at zero temperature allowed us to identify the main physical factors affecting the bandgap evolution of the OP of MAPbI(3). The negative bandgap pressure coefficient was found to be strongly dependent on the temperature (α(120K) = −13.3 ± 0.1 meV/GPa, α(80K) = −29.8 ± 0.1 meV/GPa, and α(40K) = −36.3 ± 0.1 meV/GPa). Such dependence is related to the changes in the Pb–I bond length and geometry in the unit cell as the atomic configuration approaches the phase transition as well as the increasing phonon contribution to octahedral tilting as the temperature increases.
format Online
Article
Text
id pubmed-10364135
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103641352023-07-25 Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite Pienia̧żek, Agnieszka Dybała, Filip Polak, Maciej P. Przypis, Łukasz Herman, Artur P. Kopaczek, Jan Kudrawiec, Robert J Phys Chem Lett [Image: see text] Recent scientific interest in examining the bandgap evolution of a MAPbI(3) hybrid perovskite by applying hydrostatic pressure has mostly focused on a room-temperature tetragonal phase. In contrast, the pressure response of a low-temperature orthorhombic phase (OP) of MAPbI(3) has not been explored and understood. In this research, we investigate for the first time how hydrostatic pressure alters the electronic landscape of the OP of MAPbI(3). Pressure studies using photoluminescence combined with calculations within density functional theory at zero temperature allowed us to identify the main physical factors affecting the bandgap evolution of the OP of MAPbI(3). The negative bandgap pressure coefficient was found to be strongly dependent on the temperature (α(120K) = −13.3 ± 0.1 meV/GPa, α(80K) = −29.8 ± 0.1 meV/GPa, and α(40K) = −36.3 ± 0.1 meV/GPa). Such dependence is related to the changes in the Pb–I bond length and geometry in the unit cell as the atomic configuration approaches the phase transition as well as the increasing phonon contribution to octahedral tilting as the temperature increases. American Chemical Society 2023-07-12 /pmc/articles/PMC10364135/ /pubmed/37436849 http://dx.doi.org/10.1021/acs.jpclett.3c01258 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Pienia̧żek, Agnieszka
Dybała, Filip
Polak, Maciej P.
Przypis, Łukasz
Herman, Artur P.
Kopaczek, Jan
Kudrawiec, Robert
Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title_full Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title_fullStr Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title_full_unstemmed Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title_short Bandgap Pressure Coefficient of a CH(3)NH(3)PbI(3) Thin Film Perovskite
title_sort bandgap pressure coefficient of a ch(3)nh(3)pbi(3) thin film perovskite
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364135/
https://www.ncbi.nlm.nih.gov/pubmed/37436849
http://dx.doi.org/10.1021/acs.jpclett.3c01258
work_keys_str_mv AT pieniazekagnieszka bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT dybałafilip bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT polakmaciejp bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT przypisłukasz bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT hermanarturp bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT kopaczekjan bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite
AT kudrawiecrobert bandgappressurecoefficientofach3nh3pbi3thinfilmperovskite