Cargando…
Time- and cost-effective production of untagged recombinant MVA by flow virometry and direct virus sorting
BACKGROUND: Recombinant MVAs (rMVAs) are widely used both in basic and clinical research. Our previously developed Red-to-Green Gene Swapping Method (RGGSM), a cytometry-based Cell-Sorting protocol, revolves around the transient expression of a green fluorescent cytoplasmic marker, to subsequently o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364397/ https://www.ncbi.nlm.nih.gov/pubmed/37482614 http://dx.doi.org/10.1186/s12967-023-04353-7 |
Sumario: | BACKGROUND: Recombinant MVAs (rMVAs) are widely used both in basic and clinical research. Our previously developed Red-to-Green Gene Swapping Method (RGGSM), a cytometry-based Cell-Sorting protocol, revolves around the transient expression of a green fluorescent cytoplasmic marker, to subsequently obtain purified untagged rMVA upon loss of that marker by site-specific recombination. The standard RGSSM is quite costly in terms of bench work, reagents, and Sorting Facility fees. Although faster than other methods to obtain recombinant MVAs, the standard RGSSM still is time-consuming, taking at least 25 days to yield the final product. METHODS: The direct sorting of fluorescent virions is made amenable by the marker HAG, a flu hemagglutinin/EGFP fusion protein, integrated into the external envelope of extracellular enveloped virions (EEVs). Fluorescent EEVs-containing supernatants of infected cultures are used instead of purified virus. Direct Virus-Sorting was performed on BD FACSAria Fusion cell sorter equipped with 4 lasers and a 100-mm nozzle, with 20 psi pressure and a minimal flow rate, validated using Megamix beads. RESULTS: Upon infection of cells with recombinant EEVs, at the first sorting step virions that contain HAG are harvested and cloned, while the second sorting step yields EEVs that have lost HAG, allowing to clone untagged rMVA. Because only virion-containing supernatants are used, no virus purification steps and fewer sortings are necessary. Therefore, the final untagged rMVA product can be obtained in a mere 8 days. CONCLUSIONS: Altogether, we report that the original RGSSM has been markedly improved in terms of time- and cost efficiency by substituting Cell-Sorting with direct Virus-Sorting from the supernatants of infected cells. The improved virometry-based RGGSM may find wide applicability, considering that rMVAs hold great promise to serve as personalized vaccines for therapeutic intervention against cancer and various types of infectious diseases. GRAPHICAL ABSTRACT: [Image: see text] |
---|