Cargando…
Inversion of 2D cross-hole electrical resistivity tomography data using artificial neural network
Geophysical inversion is often ill-posed because of its nonlinearity and the ordinary measured data of measured data. To deal with these problems, an artificial neural network (ANN) has been introduced with the capability of a nonlinear and complex problem for geophysical inversion. This study aims...
Autores principales: | Chhun, Kean Thai, Woo, Sang Inn, Yune, Chan-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364945/ https://www.ncbi.nlm.nih.gov/pubmed/35099315 http://dx.doi.org/10.1177/00368504221075465 |
Ejemplares similares
-
Decay of the Weyl curvature in expanding black hole cosmologies
por: Schlue, Volker
Publicado: (2022) -
The neural networks underlying reappraisal of empathy for pain
por: Naor, Navot, et al.
Publicado: (2020) -
Implicit Solutions of the Electrical Impedance Tomography Inverse Problem in the Continuous Domain with Deep Neural Networks
por: Strauss, Thilo, et al.
Publicado: (2023) -
A New inversion method of the initial state of Annulus in killing
por: Liu, Pu, et al.
Publicado: (2022) -
Food supply network disruption and mitigation: an integrated perspective of traceability technology and network structure
por: Wang, Lili, et al.
Publicado: (2022)