Cargando…
Parameterization of energy cycles between the hemispheres
Seasonal variations in the temperatures of the hemispheres induce seasonal energy cycles between the hemispheres that drive tropical cyclones. Because the northern hemisphere has warmed more than the southern hemisphere, climate energy cycles develop between the hemispheres as well. The seasonal and...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364954/ https://www.ncbi.nlm.nih.gov/pubmed/32519922 http://dx.doi.org/10.1177/0036850420922773 |
Sumario: | Seasonal variations in the temperatures of the hemispheres induce seasonal energy cycles between the hemispheres that drive tropical cyclones. Because the northern hemisphere has warmed more than the southern hemisphere, climate energy cycles develop between the hemispheres as well. The seasonal and climate energy cycles appear to interact among themselves, and tropical cyclone counts are affected by these interactions. Furthermore, the total number of tropical cyclones appears to have an increasing trend. The annual energy of tropical cyclones is nearly 1.46 × 10(22) J yr(−1), and climate cycle energy is between 4.0 and 6.6 × 10(21) J per cycle. The magnitude of the climate energy cycles is thus large enough to alter the energy and frequency of the tropical cyclones. Given that the climate is changing, the energy and frequency of tropical cyclones may be changing as well. The subject is broad and this work is limited to parameterization of the physics of energy oscillations between the hemispheres, demonstrating the existence of climate energy cycles, and revealing interactions between climate and seasonal energy cycles. Also, this parameterization may assist researchers in obtaining more and coordinated data relative to these cycles. |
---|