Cargando…
How should studies using AI be reported? lessons from a systematic review in cardiac MRI
Recent years have seen a dramatic increase in studies presenting artificial intelligence (AI) tools for cardiac imaging. Amongst these are AI tools that undertake segmentation of structures on cardiac MRI (CMR), an essential step in obtaining clinically relevant functional information. The quality o...
Autores principales: | Maiter, Ahmed, Salehi, Mahan, Swift, Andrew J., Alabed, Samer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364997/ https://www.ncbi.nlm.nih.gov/pubmed/37492379 http://dx.doi.org/10.3389/fradi.2023.1112841 |
Ejemplares similares
-
Quality of reporting in AI cardiac MRI segmentation studies – A systematic review and recommendations for future studies
por: Alabed, Samer, et al.
Publicado: (2022) -
Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population
por: Maiter, Ahmed, et al.
Publicado: (2023) -
The Role of Artificial Intelligence in Predicting Outcomes by Cardiovascular Magnetic Resonance: A Comprehensive Systematic Review
por: Assadi, Hosamadin, et al.
Publicado: (2022) -
Breast Density Should Play a Greater Role in MRI Screening Guidelines
por: Hollingsworth, Alan B, et al.
Publicado: (2023) -
Grand Challenges in AI in Radiology
por: Liu, Tianming
Publicado: (2021)