Cargando…
A Graph Convolutional Network Based on Univariate Neurodegeneration Biomarker for Alzheimer’s Disease Diagnosis
Objective: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. Methods: We proposed a univariate n...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365071/ https://www.ncbi.nlm.nih.gov/pubmed/37492469 http://dx.doi.org/10.1109/JTEHM.2023.3285723 |
Ejemplares similares
-
Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network
por: Liang, Xiaoling, et al.
Publicado: (2021) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis
por: Li, Wenchao, et al.
Publicado: (2022) -
Cellular Network Fault Diagnosis Method Based on a Graph Convolutional Neural Network
por: Amuah, Ebenezer Ackah, et al.
Publicado: (2023) -
Protein Biomarkers for the Diagnosis of Alzheimer’s Disease at Different Stages of Neurodegeneration
por: Pérez, Mar, et al.
Publicado: (2020)