Cargando…
Active Learning Performance in Labeling Radiology Images Is 90% Effective
To train artificial intelligence (AI) systems on radiology images, an image labeling step is necessary. Labeling for radiology images usually involves a human radiologist manually drawing a (polygonal) shape onto the image and attaching a word to it. As datasets are typically large, this task is rep...
Autores principales: | Bangert, Patrick, Moon, Hankyu, Woo, Jae Oh, Didari, Sima, Hao, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365082/ https://www.ncbi.nlm.nih.gov/pubmed/37492167 http://dx.doi.org/10.3389/fradi.2021.748968 |
Ejemplares similares
-
Improving disease classification performance and explainability of deep learning models in radiology with heatmap generators
por: Watanabe, Akino, et al.
Publicado: (2022) -
The Role of Radiological Imaging in the Diagnosis and Treatment of Urolithiasis: A Narrative Review
por: Al-Shawi, Moneera M, et al.
Publicado: (2022) -
Awareness of Artificial Intelligence in Medical Imaging Among Radiologists and Radiologic Technologists
por: Alsultan, Kamal
Publicado: (2023) -
Factors Influencing the Choice of Radiology Subspecialty Among Radiology Trainees in Sudan
por: Abdelrahman, Salma, et al.
Publicado: (2022) -
The Additional Diagnostic Value of the Three-dimensional Volume Rendering Imaging in Routine Radiology Practice
por: Duran, Alper H, et al.
Publicado: (2019)