Cargando…
AutoRadiomics: A Framework for Reproducible Radiomics Research
PURPOSE: Machine learning based on radiomics features has seen huge success in a variety of clinical applications. However, the need for standardization and reproducibility has been increasingly recognized as a necessary step for future clinical translation. We developed a novel, intuitive open-sour...
Autores principales: | Woznicki, Piotr, Laqua, Fabian, Bley, Thorsten, Baeßler, Bettina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365084/ https://www.ncbi.nlm.nih.gov/pubmed/37492662 http://dx.doi.org/10.3389/fradi.2022.919133 |
Ejemplares similares
-
Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer
por: Laqua, Fabian Christopher, et al.
Publicado: (2023) -
Virtual Monoenergetic Images of Dual-Energy CT—Impact on Repeatability, Reproducibility, and Classification in Radiomics
por: Euler, André, et al.
Publicado: (2021) -
A radiomics approach to the diagnosis of femoroacetabular impingement
por: Montin, Eros, et al.
Publicado: (2023) -
Radiomics in Renal Cell Carcinoma—A Systematic Review and Meta-Analysis
por: Mühlbauer, Julia, et al.
Publicado: (2021) -
Reproducibility of CT radiomic features in lung neuroendocrine tumours (NETs) patients: analysis in a heterogeneous population
por: Bicci, Eleonora, et al.
Publicado: (2023)