Cargando…
Leveraging Multi-Task Learning to Cope With Poor and Missing Labels of Mammograms
In breast cancer screening, binary classification of mammograms is a common task aiming to determine whether a case is malignant or benign. A Computer-Aided Diagnosis (CADx) system based on a trainable classifier requires clean data and labels coming from a confirmed diagnosis. Unfortunately, such l...
Autores principales: | Tardy, Mickael, Mateus, Diana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365086/ https://www.ncbi.nlm.nih.gov/pubmed/37492176 http://dx.doi.org/10.3389/fradi.2021.796078 |
Ejemplares similares
-
Renal Cell Carcinoma Diagnosis After Initial Detection on Screening Mammogram
por: Nguyen, Quan D, et al.
Publicado: (2020) -
Can Artificial Intelligence Beat Humans in Detecting Breast Malignancy on Mammograms?
por: Malik, Mariam, et al.
Publicado: (2023) -
Active Learning Performance in Labeling Radiology Images Is 90% Effective
por: Bangert, Patrick, et al.
Publicado: (2021) -
Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms
por: Bouget, David, et al.
Publicado: (2021) -
Liver Transplant Complications Radiologist Can't Miss
por: Kimura, Yukiyoshi, et al.
Publicado: (2020)