Cargando…
Adversarial counterfactual augmentation: application in Alzheimer’s disease classification
Due to the limited availability of medical data, deep learning approaches for medical image analysis tend to generalise poorly to unseen data. Augmenting data during training with random transformations has been shown to help and became a ubiquitous technique for training neural networks. Here, we p...
Autores principales: | Xia, Tian, Sanchez, Pedro, Qin, Chen, Tsaftaris, Sotirios A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365114/ https://www.ncbi.nlm.nih.gov/pubmed/37492661 http://dx.doi.org/10.3389/fradi.2022.1039160 |
Ejemplares similares
-
Impact of multi-source data augmentation on performance of convolutional neural networks for abnormality classification in mammography
por: Hwang, InChan, et al.
Publicado: (2023) -
Counterfactual Anonymous Quantum Teleportation in the Presence of Adversarial Attacks and Channel Noise
por: Nang Paing, Saw, et al.
Publicado: (2022) -
Cardiac aging synthesis from cross-sectional data with conditional generative adversarial networks
por: Campello, Víctor M., et al.
Publicado: (2022) -
GANterfactual—Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning
por: Mertes, Silvan, et al.
Publicado: (2022) -
Sex Differences in the Metabolome of Alzheimer's Disease Progression
por: González Zarzar, Tomás, et al.
Publicado: (2022)