Cargando…
Improving disease classification performance and explainability of deep learning models in radiology with heatmap generators
As deep learning is widely used in the radiology field, the explainability of Artificial Intelligence (AI) models is becoming increasingly essential to gain clinicians’ trust when using the models for diagnosis. In this research, three experiment sets were conducted with a U-Net architecture to impr...
Autores principales: | Watanabe, Akino, Ketabi, Sara, Namdar, Khashayar, Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365129/ https://www.ncbi.nlm.nih.gov/pubmed/37492678 http://dx.doi.org/10.3389/fradi.2022.991683 |
Ejemplares similares
-
A Transfer Learning–Based Active Learning Framework for Brain Tumor Classification
por: Hao, Ruqian, et al.
Publicado: (2021) -
Improved image classification explainability with high-accuracy heatmaps
por: Preechakul, Konpat, et al.
Publicado: (2022) -
Relevance maps: A weakly supervised segmentation method for 3D brain tumours in MRIs
por: Rajapaksa, Sajith, et al.
Publicado: (2022) -
Active Learning Performance in Labeling Radiology Images Is 90% Effective
por: Bangert, Patrick, et al.
Publicado: (2021) -
A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account
por: Namdar, Khashayar, et al.
Publicado: (2021)