Cargando…
Tree-based survival analysis improves mortality prediction in cardiac surgery
OBJECTIVES: Machine learning (ML) classification tools are known to accurately predict many cardiac surgical outcomes. A novel approach, ML-based survival analysis, remains unstudied for predicting mortality after cardiac surgery. We aimed to benchmark performance, as measured by the concordance ind...
Autores principales: | Penny-Dimri, Jahan C., Bergmeir, Christoph, Reid, Christopher M., Williams-Spence, Jenni, Perry, Luke A., Smith, Julian A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365268/ https://www.ncbi.nlm.nih.gov/pubmed/37492161 http://dx.doi.org/10.3389/fcvm.2023.1211600 |
Ejemplares similares
-
Paying attention to cardiac surgical risk: An interpretable machine learning approach using an uncertainty-aware attentive neural network
por: Penny-Dimri, Jahan C., et al.
Publicado: (2023) -
Machine learning to predict adverse outcomes after cardiac surgery: A systematic review and meta‐analysis
por: Penny‐Dimri, Jahan C., et al.
Publicado: (2022) -
The prognostic significance of postoperative hyperbilirubinemia in cardiac surgery: systematic review and meta-analysis
por: Raveendran, Dev, et al.
Publicado: (2022) -
Donor Cardiac Troponin for Prognosis of Adverse Outcomes in Cardiac Transplantation Recipients: a Systematic Review and Meta-analysis
por: Liu, Zhengyang, et al.
Publicado: (2021) -
Elevated Cardiac Troponin to Detect Acute Cellular Rejection After Cardiac Transplantation: A Systematic Review and Meta-Analysis
por: Liu, Zhengyang, et al.
Publicado: (2022)