Cargando…
Mouse brain MR super-resolution using a deep learning network trained with optical imaging data
INTRODUCTION: The resolution of magnetic resonance imaging is often limited at the millimeter level due to its inherent signal-to-noise disadvantage compared to other imaging modalities. Super-resolution (SR) of MRI data aims to enhance its resolution and diagnostic value. While deep learning-based...
Autores principales: | Liang, Zifei, Zhang, Jiangyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365285/ https://www.ncbi.nlm.nih.gov/pubmed/37492378 http://dx.doi.org/10.3389/fradi.2023.1155866 |
Ejemplares similares
-
Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest
por: Maennlin, Simon, et al.
Publicado: (2023) -
Deep learning-based single image super-resolution for low-field MR brain images
por: de Leeuw den Bouter, M. L., et al.
Publicado: (2022) -
Diagnostic Value of Diffusion-weighted Magnetic Resonance (MR) Imaging, MR Perfusion, and MR Spectroscopy in Addition to Conventional MR Imaging in Intracranial Space-occupying Lesions
por: Aydın, Zeynep B, et al.
Publicado: (2019) -
Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets
por: Zhang, Yue, et al.
Publicado: (2021) -
Editorial: Advances in deep learning methods for medical image analysis
por: Suk, Heung-Il, et al.
Publicado: (2023)