Cargando…
Robust and accurate pulmonary nodule detection with self-supervised feature learning on domain adaptation
Medical imaging data annotation is expensive and time-consuming. Supervised deep learning approaches may encounter overfitting if trained with limited medical data, and further affect the robustness of computer-aided diagnosis (CAD) on CT scans collected by various scanner vendors. Additionally, the...
Autores principales: | Liu, Jingya, Cao, Liangliang, Akin, Oguz, Tian, Yingli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365286/ https://www.ncbi.nlm.nih.gov/pubmed/37492669 http://dx.doi.org/10.3389/fradi.2022.1041518 |
Ejemplares similares
-
AI-Driven Robust Kidney and Renal Mass Segmentation and Classification on 3D CT Images
por: Liu, Jingya, et al.
Publicado: (2023) -
Aspergillus Nodule in a Patient With Autoimmune Pulmonary Alveolar Proteinosis
por: Nagaoka, Yuhei, et al.
Publicado: (2022) -
Diagnostic Accuracy of Maximum Intensity Projection in Diagnosis of Malignant Pulmonary Nodules
por: Jabeen, Naila, et al.
Publicado: (2019) -
Comparison of Maximum Intensity Projection and Volume Rendering in Detecting Pulmonary Nodules on Multidetector Computed Tomography
por: Naeem, Muhammad Qasim, et al.
Publicado: (2021) -
Feasibility analysis of CT-guided thermal ablation of multiple pulmonary nodules combined with intraoperative biopsy
por: Shan, Yu-Qing, et al.
Publicado: (2023)