Cargando…
Relevance maps: A weakly supervised segmentation method for 3D brain tumours in MRIs
With the increased reliance on medical imaging, Deep convolutional neural networks (CNNs) have become an essential tool in the medical imaging-based computer-aided diagnostic pipelines. However, training accurate and reliable classification models often require large fine-grained annotated datasets....
Autores principales: | Rajapaksa, Sajith, Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365288/ https://www.ncbi.nlm.nih.gov/pubmed/37492689 http://dx.doi.org/10.3389/fradi.2022.1061402 |
Ejemplares similares
-
Automatic brain lesion segmentation on standard MRIs of the human head: a scoping review protocol
por: Gryska, Emilia Agnieszka, et al.
Publicado: (2019) -
Improving disease classification performance and explainability of deep learning models in radiology with heatmap generators
por: Watanabe, Akino, et al.
Publicado: (2022) -
A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs
por: Hsu, Wei-Wen, et al.
Publicado: (2022) -
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021) -
From coarse to fine: a deep 3D probability volume contours framework for tumour segmentation and dose painting in PET images
por: Zhang, Wenhui, et al.
Publicado: (2023)