Cargando…
Automatically Identifying Self-Reports of COVID-19 Diagnosis on Twitter: An Annotated Data Set, Deep Neural Network Classifiers, and a Large-Scale Cohort
Autores principales: | Klein, Ari Z, Kunatharaju, Shriya, O'Connor, Karen, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365612/ https://www.ncbi.nlm.nih.gov/pubmed/37399062 http://dx.doi.org/10.2196/46484 |
Ejemplares similares
-
Pregex: Rule-Based Detection and Extraction of Twitter Data in Pregnancy
por: Klein, Ari Z, et al.
Publicado: (2023) -
Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models
por: Klein, Ari Z, et al.
Publicado: (2022) -
An annotated data set for identifying women reporting adverse pregnancy outcomes on Twitter
por: Klein, Ari Z., et al.
Publicado: (2020) -
An empirical evaluation of electronic annotation tools for Twitter data
por: Weissenbacher, Davy, et al.
Publicado: (2020) -
Toward Using Twitter Data to Monitor COVID-19 Vaccine Safety in Pregnancy: Proof-of-Concept Study of Cohort Identification
por: Klein, Ari Z, et al.
Publicado: (2022)