Cargando…
Image-based quantification of histological features as a function of spatial location using the Tissue Positioning System
BACKGROUND: Tissues such as the liver lobule, kidney nephron, and intestinal gland exhibit intricate patterns of zonated gene expression corresponding to distinct cell types and functions. To quantitatively understand zonation, it is important to measure cellular or genetic features as a function of...
Autores principales: | Rong, Ruichen, Wei, Yonglong, Li, Lin, Wang, Tao, Zhu, Hao, Xiao, Guanghua, Wang, Yunguan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365985/ https://www.ncbi.nlm.nih.gov/pubmed/37453365 http://dx.doi.org/10.1016/j.ebiom.2023.104698 |
Ejemplares similares
-
QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain
por: Yates, Sharon C., et al.
Publicado: (2019) -
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
por: Wang, Shidan, et al.
Publicado: (2023) -
Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images
por: Wen, Zhuoyu, et al.
Publicado: (2023) -
Digital imaging of colon tissue: method for evaluation of inflammation severity by spatial frequency features of the histological images
por: Petrolis, Robertas, et al.
Publicado: (2015) -
Computational tools for automated histological image analysis and quantification in cardiac tissue
por: Gratz, Daniel, et al.
Publicado: (2019)