Cargando…

Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction

Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employ...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Cong, Zhou, Jian, Zhang, Lili, Wan, Wenchao, Ding, Yuxiao, Sun, Xiaoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366111/
https://www.ncbi.nlm.nih.gov/pubmed/37488102
http://dx.doi.org/10.1038/s41467-023-40177-1
Descripción
Sumario:Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employed to explore the feasibility of *O-*O coupling mechanism, which can circumvent the scaling relationship with improving the catalytic performance of N-doped graphene supported Fe-, Co-, Ni-, and Cu-containing heteronuclear dual-atom catalysts, namely, M’M@NC. Based on the constructed activity maps, a rationally designed descriptor can be obtained to predict homonuclear catalysts. Seven heteronuclear and four homonuclear dual-atom catalysts possess high activities that outperform the minimum theoretical overpotential. The chemical and structural origin in favor of *O-*O coupling mechanism thus leading to enhanced reaction activity have been revealed. This work not only provides additional insights into the fundamental understanding of reaction mechanisms, but also offers a guideline for the accelerated discovery of efficient catalysts.