Cargando…
A general model-based causal inference method overcomes the curse of synchrony and indirect effect
To identify causation, model-free inference methods, such as Granger Causality, have been widely used due to their flexibility. However, they have difficulty distinguishing synchrony and indirect effects from direct causation, leading to false predictions. To overcome this, model-based inference met...
Autores principales: | Park, Se Ho, Ha, Seokmin, Kim, Jae Kyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366229/ https://www.ncbi.nlm.nih.gov/pubmed/37488136 http://dx.doi.org/10.1038/s41467-023-39983-4 |
Ejemplares similares
-
Inferring causality in biological oscillators
por: Tyler, Jonathan, et al.
Publicado: (2021) -
Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality
por: Mirkes, Evgeny M., et al.
Publicado: (2020) -
Breaking the curse of dimensionality to identify causal variants in Breeding 4
por: Ramstein, Guillaume P., et al.
Publicado: (2018) -
Institutions and the resource curse: New insights from causal machine learning
por: Hodler, Roland, et al.
Publicado: (2023) -
The Curse of Normalization
por: Wolkenhauer, Olaf, et al.
Publicado: (2002)